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Abstract-An analysis is made for simultaneously developing laminar velocity and temperature fields in a 
parallel plate channel in which convective and radiative heat transfer interact. One wall of the channel is 
externally heated and the other is externally insulated ; air is the heat transfer fluid. These conditions are 
similar to those in an air-operated flat-plate solar collector. The results show that the radiant interchange 
causes the task of convective heating of the fluid to be shared between the two walls, with as much as 40% of 
the convective transfer taking place at the externally adiabatic wall. This can give rise to a significant 
reduction of the temperature of the directly heated wall which, for a solar collector, tends to improve its 
efficiency. The Nusselt numbers in the presence of radiation are higher than those for pure forced convection. 

NOMENCLATURE 

surface area ; 
angle factor ; 
channel height; 
local heat transfer coefficient, q,/(T,,, - Tb); 
thermal conductivity; 
channel length; 
local Nusselt number on heated wall, 

h(2H)lk; 
dimensionless pressure, equation (2); 
pressure; 
Prandtl number ; 
local convective heat flux; 
local radiative heat flux; 
local external heat flux; 
Reynolds number, 42H)/v; 
absolute temperature; 
bulk temperature; 
wall temperature; 
inlet-plenum and fluid inlet temperature; 
exit-plenum temperature; 

X, Y, dimensionless coordinates, equation (1); 

x, Y, physical coordinates, Fig. 1; 
U, V, dimensionless velocities, equation (1); 

* Present address : Owens-Corning Technical Center, 
Granville, Ohio, U.S.A. 

u, v, velocity components; 

a, mean velocity ; 
v* x-coordinate along heated wall ; 
0, dimensionless temperature, T/T, ; 
v, kinematic viscosity; 
L x-coordinate along unheated wall; 
Q, Stefan-Boltzmann constant. 

INTRODUCTION 

IN RECENT years, there has been a number of studies of 
the interaction between forced convection and ra- 
diation heat transfer in pipes and ducts. In the main, 
these studies have been concerned with flowing fluids 
which participate in the radiation process, although 
some of the earlier work dealt with radiatively non- 
participating fluids. Air may be regarded as a ra- 
diatively nonparticipating fluid, and when air flows 
under laminar conditions the relatively low convective 
heat transfer coefficients provide a setting for signi- 
ficant effects of radiative transfer between the duct 
walls. This paper deals with one such situation, 
namely, laminar flow of air in a parallel plate channel 
which is uniformly heated at one wall and adiabatic 
at the other. A schematic diagram of the physical 
situation is shown in Fig. 1. 

The present work was initially motivated by flat 
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FIG. 1. Schematic diagram of the parallel plate channel. 
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plate solar collectors in which air is employed as the 
transfer fluid. Although the analysis and results arc not 
limited to solar collector applications, it is edifying to 

discuss air-operated collectors in order to show the 
basis of the present analytical model. 

In the standard type of air-operated solar collector 
presently in use today, the solar flux absorbed by the 
collector plate is transferred to an air stream which 
passes through a flat rectangular duct of large cross- 
sectional aspect ratio. The duct is situated immediately 
beneath the collector plate, so that the plate serves as 
the upper wall of the duct. The lower wall of the duct is 
an insulated surface. Typically, the height H of the duct 

is 1 cm (0.394 in.) and its length L (per collector panel) 
is 1.98 m (6; ft). The rate of airflow through the duct is 
usually selected to be 2 ft”/min per square foot of 

collector surface [l]. The corresponding Reynolds 

number (based on an equivalent diameter D, = 21-1) is 
about 2300. 

With regard to flow regimes (i.e. laminar vs turbu- 
lent) in a parallel plate channel, an extensive experi- 
mental study [2] encompassing 12 entrance and distur- 
bance configurations indicated that laminar tlow 

commonly persisted up to Re = 2600 or greater if the 
sources of disturbance are not situated within the 
channel proper. In view of this and of the aforemen- 

tioned value of 2300, there is a basis for considering a 
laminar flow model in the analysis of the heat transfer 
processes taking place in the collector airflow pas- 

sages. There are, of course, other operating conditions 
(e.g., a series arrangement of collector panels) where 
higher Reynolds numbers will be encountered. These 
cases may be characterized by transitional flowjs (i.e. 
intermittently turbulent), so that a model based on 
fully turbulent conditions is inappropriate. For these 
transitional cases, the results of a laminar flow analysis 

may have trendwise relevance. 
The analysis to be performed here will be concerned 

with high Reynolds number laminar flows (Re = 15OC 
2500). At these Reynolds numbers, there is a long 

hydrodynamic development length (- 1OOH at Re 
= 2500). Therefore, in the analysis, account will be 
taken of the simultaneous development of the velocity 

and temperature distributions along the length of the 

channel. 
The presence of radiative transfer is expected to 

improve the efficiency with which heat is transferred 

from the heated plate to the fluid, i.e. it should lower 
the temperature of the heated plate. This expectation is 
based on the belief that radiation will deliver energy to 

the otherwise unheated plate (lower plate of Fig. 1) 
which, in turn, will transfer heat to the fluid by 
convection. Thus, radiation serves as an enhancement 
mechanism. The maximum effect of the radiative 

transfer will occur when the surfaces of the channel are 
black. and it is, therefore, natural to focus attention on 
the black case, as has been done here. 

The starting point of the analysis is the governing 
differential equations expressing conservation of mass, 
momentum and energy for the fluid, supplemented by 

the radiative transfer equations for the walls. ‘l‘h:s 
complex system does not admit an analytical solution. 

and numerical techniques were employed. The prob- 
lem is governed by five parameters, so that care has to 
be exercised in the selection of cases for which 

solutions arc obtained, especially since each case yields 
presentable results for the temperatures and heat 
fluxes at the heated and unheated walls, the hulk 
temperature, and the Nusselt number. The approach 
finally chosen was to define a base case (typical of solar 
collector operation) and then to systematically change 

the parameter values relative to those of the base case. 

A literature search yielded two papers which. a!- 
though having a filial relationship to the present work. 
are distinctly different. In [3], consideration was given 
to the interaction of radiation and convection in a 
parallel plate channel, but the task of solving the 

convection problem was avoided by assuming that the 
heat transfer coefficients were known. Such an ap- 
proach is not applicable 111 the present problem 
because the coefficients are not known beforehand but 
depend on the temperature distributions along the 

wails (which are found from the solutions). In 141. the 
task of solving the convection problem was also 
avoided~ in that case by making use of series SOL 
lutions for hydrodynamically developed laminar chan- 

nel flow with uniform wall heat flux. That method 1s 
also inapplicable to the present problem but, even if it 
were. its use would have involved greater complexity 

and yet would have provided results of lesser accuracy 
than the present direct solution method. 

Forrnulutiof7 of t!w gocerrfimg eyuutiorl.5 

To prepare the governing equations for solution, 
dimensionless variables and parameters are first in- 

troduced as follows 

A’ = u.‘H, Y = _vff. c; =z ,I u. I’ = I’ ld (I) 

P = p/pi”. ff = P’T,, Rr =- G(2H) v t?) 

where all temperatures are expressed in absolute units. 
With these, the mass, momentum and ener&y equa- 
tions for the fluid are expressible as 

r.51 

In these equations, the streamwise second derivatives 
have been omitted, as have cross sectional pressure 
variations; in addition, the y-momentum equation has 
been suppressed altogether. Such a model (which is 
actually a boundary layer model) is altogether valid for 
high laminar Reynolds numbers, as are being con- 
sidered here. 

It may also be noted that equations (3) and (4) 



Convective-radiative interaction in a parallel plate channel 1139 

contain three unknowns, V, V and P. An additional 
equation, needed to make the system determinate 
(actually, to determine P), is obtained from the con- 
dition that the same mass flow passes through all cross 
sections of the channel. 

The foregoing equations are the conventional equa- 
tions for hydrodynamically and thermally developing 
duct flows. They may be supplemented by the wall and 
inlet conditions for the velocity. At the wall, no-slip 
and impermeability give, respectively, 

v=v=o, (6) 

while for a flat velocity profile at the inlet 

v = 1, v = 0. (7) 

The special features of the problem arise through the 
thermal boundary conditions, which couple the con- 
vection to the radiation. For concreteness, the thermal 
boundary condition at the externally heated wall 
(upper wall of Fig. 1) will be dealt with first, after which 
the boundary condition at the externally adiabatic 
wall (lower wall) will be written. If 4, and q, denote the 
local convective and radiative fluxes leaving a position 
X = rl on the heated wall, then 

q&) + q,(q) = 4, = constant. (8) 

The convective flux follows directly from Fourier’s law 
as 

%(V) = @~J~)@~/~Y). (9) 

The radiative flux requires a more comprehensive 
treatment, as will now be outlined. 

The radiative flux qr at surface location v is the net of 
the emitted radiation and the absorbed radiation at 
that location. For a black surface, the radiation 
emitted at rl per unit time and area is oT4(q), while the 
absorbed radiation is identically equal to the incident 
radiation. The incident radiation arriving at rl comes 
from three zones : (i) the opposite wall, (ii) the channel 
inlet aperture at X = 0, and (iii) the channel exit 
aperture at X = L/H. The radiation entering the 
channel via the apertures, i.e. (ii) and (iii), may have a 
variety of characteristics depending on the nature of 
ihe upstream and downstream plenums. For gener- 
ality, the respective plenums will be regarded as 
isothermal zones with temperatures T, and Tn. 

The mathematical representation of the incident 
fluxes (i), (ii) and (iii) will be dealt with only briefly here 
since similar descriptions are available elsewhere (e.g., 
[5], Chapter 3). With regard to (i), it may be noted that 
the black-body radiation emitted at a position r on the 
opposite wall is aT4(t)dAs, of which a fraction dF,_, 
arrives at ye (the factor F is termed an angle factor). The 
reciprocity rule for angle factors states that dA, dF,_, 
= dA,dF,_;. Therefore, the radiation emitted at 5 
which arrives per unit area at q is ar4(c)dF,_<. 
Contributions of this type are delivered to v] from all 
points between 5 = 0 and 5 = L/H, and the total is 
obtained by integration. 

For (ii), the assumption of an isothermal plenum at 

temperature r, means that the radiation streaming 
into the channel through the inlet aperture (area A,) is 
aTfAt, of which a fraction dF,_, arrives at q. The 
application of the reciprocity rule A, dFt_,=dA,F,_t 
then gives that aTfF,_, arrives per unit area at q. A 
similar development shows that aTfiF,_,, arrives at 1 
from the exit aperture. 

It is now possible to bring together all that has been 
developed between equation (8) and the present. When 
dimensionless variables are introduced, there follows 

89 q,H crT; 
-=-- -__ 

i3Y T,k (k/H) 
Q4(5)dF,-; 

- F,_, - BfiF,_,, 1 (10) 

Equation (10) expresses the derivative 30/a Y at a point 
q on the heated (i.e. upper) wall in terms of the 
temperature at n, of the temperatures at all points 5 on 
the externally adiabatic wall, and of the temperature in 
the downstream plenum. If the right-hand side of 
equation (10) were known, as, for example, from a 
preceding cycle of an iterative solution method, then 
the value of %/aY could be regarded as known. Such 
known values of a&?Y at all 0 I TV 5 L/H could then 
serve as the boundary condition for the convective 
energy equation (5). 

To determine a corresponding boundary condition 
for the externally adiabatic wall, an analysis similar to 
the foregoing is made, with the end result 

+ F<-, + B;F<_,t (11) 

Again, if the right-hand side were tentatively known at 
all 0 < 5 < L/H, this equation can be employed as a 
boundary condition for the solution of the convection 
problem. 

It may be noted that equations (10) and (11) contain 
two parameters 

UT; qwH qw aT: 
(k/H)’ __ = 

~__ 
T,K aTf (k/H)’ 

(12) 

The first of these can be regarded as a measure of the 
relative strengths of the radiative and convective 
transport modes. The second has been rephrased in 
equation (12) to form the group q,JaTf, which will be 
regarded here as an index of the strength of the external 
heating. 

It is also interesting to identify the message of 
equations (10) and (11) with regard to convective heat 
transfer. In (lo), the quantity LM/aY represents, in a 
nondimensional form, the local convective heat trans- 
fer from locations on the heated wall to the fluid. In the 
absence of radiation, the uniform heat flux boundary 
condition corresponds to a0laY = q,H/T,k. The 
radiation term appearing in (lo), contained within the 
square brackets, is expected to be positive. Therefore, 
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the expected effect of radiation is to reduce the 
convective heat transfer at the heated wall of the 
channel. 

In equation (1 l), the quantity (- iie/r?Y) denotes the 

local convective flux from a point 5 on the unheated 
wall to the fluid. In the bracketed term on the right of 

(1 l), the absorbed radiation is expected to exceed the 
emitted radiation, which results in a positive value of 
the convective heat flux. The foregoing observations, 
taken together, indicate that the main role of the 
radiation is to shift some of the burden of the 

convective heat transfer from the heated to the un- 
heated wall. 

To complete the specification of the problem, it 

remains to deal with the temperatures at the inlet and 
exit of the duct. The convection problem only requires 
that the inlet temperature be given, and the condition 
T = T, yields 

/9=0,=1 at X = 0. (13) 

The radiation problem requires values of the tempera- 
tures in both the inlet and exit plenums. Depending on 
the geometrical configurations of the plenums, it is 
conceivable that the temperature of the plenum walls 

will not equal that of the fluid in the respective plenum. 
The deviations will depend on the specifics of the 

particular situation. For a general study, such as that 
performed here, it appears appropriate to take the wall 
and fluid temperatures in each plenum to be equal. 
Thus, for the radiation problem, 

Q=8,=1 at X=0 (14) 

0 = 8,, = fluid bulk temperature 

at X = L/H. (15) 

A final aspect of the specification of the problem is to 

provide expressions for the angle factors that appear in 
equations (10) and (11). This information will be 
conveyed shortly when the solution methodology is 

described. 

Solution methodology 

The governing equations that were presented in the 
prior section of the paper were solved numerically by 
finite difference procedures. A general outline of the 

solution scheme will be discussed first, with details to 
follow. For a given Reynolds number Re and channel 
length L/H, a solution was first obtained for the 
velocity problem defined by equations (3), (4), (6) and 
(7). Then, attention was turned to the heat transfer 
problem and, to define a given case, numerical values 
were assigned to aT:/(k/H), q,JaTt, and Pr, with 
q,H/T,k being determined from the product of the first 
two of these. A solution was first obtained for the pure 
convection case: that is, the energy equation (5) was 
solved subject to radiation-free forms of equations (10) 
and (11) and to equation (13). Then, the pure con- 
vection solution was employed to initiate an iterative 
scheme for solving the coupled radiation-convection 

problem. 

From the pure convection solution, temperature 
distributions 0(q) and Q(t), respectively corresponding 
to the heated and unheated walls, are available, as is 
the fluid bulk temperature at the channel exit [equal to 
U,, according to equation (15)]. With these inputs, the 
right-hand sides of equations (10) and (1 1) can he 
evaluated, and this yields the distributions of iii i 1 
along the heated and unheated walls. These boundary 
conditions, together with I) = 1 at X =: 0, may then be 

employed for the solution of the energy equation I 5 I. 
and this solution yields new values for 0(rp). f)(t). ,rnci 
fir,. Equations (10) and (11) can then be re-evaluated 
and equation (5) solved anew. Th!s procedure was 
continued to convergence. which usually occurred 
within five cycles of iteration. 

The finite difference methodology used tar the 
velocity problem and for the convective part of the 
heat transfer problem is an adaptation of the Patan 
kar--Spalding boundary layer procedure [6]. That 
procedure was modified in accordance with the appen- 

dix of [7] to facilitate the determination of the 
unknown pressure gradient dP;dX that appears in 
equation (4). To obtain highly accurate solutions, 

approximately 5700 grid points were deployed through- 
out the flow field-30 points in each of 187 cross 

sections. To accommodate the larger gradients, the 
points were more densely positioned near the channel 
walls. A higher concentration of points was also 
employed at small and moderate X values to adapt to 
the velocity and thermal development; the grid was 
also refined near X = L!H to accommodate rapid 
temperature changes induced by radiation transfer to 

the downstream plenum. 

The integral terms of equations (10) and I1 it 
(associated with the radiation streaming between the 
walls) were also recast in finite difference form. In this 

connection. let (t2 --- <i). (<3 :z), . (<, .- <, ,i 
represent the lengths of successive line segments 
deployed along the unheated wall. Furthermore. let ;I, 
= (li + <,,i),/2 denote the midpoints of the segments. 
Similarly. the heated wall is envisioned as being made 
up of segments of length (a,, , qn) with midpoint 0, 
= (q, +- j/,,+ i):2. Then, with these, the integral term of 

equation (10) was represented as 

where the angle factor relates to interchange between 

segments of length (ql,+, - ~I,,I and if,_, -- CL). re- 
spectively situated on the heated and unheated w~alls. 
The angle factor was evaluated using equation (4. 65) 
of [S], with the result 

2(%+1 -q,)F$__,, = [(!)“.+I -<i)’ ‘- i]’ ’ 

+[(r)“.--;,+,))+fl]’ L 

-[(u”+i -<,.,)“+l]iZ 

-[(r)-<,)z+I]‘l. (17) 

A similar approach was employed for evaluating the 
integral term of equation (11). The angle factors F‘,, lI 
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~,_rr, etc. were evaluated for exchange between the 
segment (qn+ 1 -qn) and the aperture areas A, and A,,. 

Since the two walls were subdivided into identical 
distributions of line segments, the angle factor matrix 
is symmetric. It can, therefore, be stored in a one- 
dimensional array following the sequence (1, l), (2, l), 
(2,2), (3,1), (3,2), (3,3), (4, l), . The angle factors 
were calculated once (via double precision) and re- 
trieved when needed according to the aforementioned 
indexing sequence. 

RESULTS AND DISCUSSION 

Although the heat transfer coefficient h (or Nusselt 
number) is traditionally the main focus in a pre- 
sentation of results, there are good reasons for not 
giving it top billing here. The essential fact is that due 
to the action of radiation, the local convective heat 
transfer qc, the local wall temperature T, and the local 
bulk temperature T,, are all unknown functions of x. 
Since these quantities are, in fact, the ingredients that 
comprise the heat transfer coefficient, it follows that 
giving numerical values of h is equivalent to giving a 
relationship between three unknowns. In view of this, it 
is appropriate to explicitly present results for q,, T, 
and Tb, all as functions of x. Furthermore, in the 
presentation, account has to be taken of the fact that 
the values of qc and T,,, on the heated wall are different 
from those on the unheated wall. For completeness, 
Nusselt number results are also given. 

For a dimensionless presentation, the local heat 
transfer results are expressed as qc/qw which, in terms 
of the variables of the analysis, was evaluated from 

q&w = +_ (a@/aY)l(q,HIT,k). (18) 

In this equation, the plus sign is used with %/aY on the 
heated wall and the minus sign is taken with %/aY on 
the unheated wall. 

The wall and bulk temperatures are reported in ratio 
form, namely 8, = TJT, and eb = TJT,, where 

O,= 0UdY 
s 1s 

UdY (19) 

with the integrals extending over the range 0 I Y < 1. 
Local Nusselt numbers were evaluated only at the 
heated wall according to the definition 

Nu=-%4,- 2H z(aeja Y) 

T,--T, k 
. 

h-4 
(20) 

In planning the presentation of results, account has 
to be taken of the fact that there are five independent 
parameters, Re, Pr, L/H, aT:/(k/H) and q&Tf. 
Furthermore, for each case, the distributions of T,,,, Tb, 
q,, and Nu are to be plotted as a function of x. Clearly, a 
conventional parametric study is precluded because 
space would not be available to present the avalanche 
of results that would be forthcoming. The approach 
adopted to deal with this situation was to select a base 
case (typical of solar collector operation) and then to 
examine the trends in the results as the parameters are 
changed relative to the base-case values. The base case 
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FIG. 2. Wall and bulk temperature distributions for the base 
case [equation (21)] and for a variant with L/H = 100. 

was specified as follows 

Re = 2500, Pr = 0.7, L/H = 200, 

aT;/(k/H) = 0.5, q&T; = 1. (21) 

For all of the other cases, the Prandtl number was 
maintained at a value of 0.7. 

Wall and bulk temperature distributions 

The base-case wall and bulk temperatures are plotted 
as a function of position along the length of the channel 
in Fig. 2, where it should be noted that all temperatures 
are expressed in absolute units. In addition to the 
results which include the effect of radiative transfer, the 
figure also contains results corresponding to pure 
forced convection (i.e. radiation suppressed alto- 
gether). The comparison between the results with and 
without radiative participation is of importance for 
two reasons. First, prior to the present investigation, 
the pure convection results would have been employed 
to calculate system heat transfer performance, without 
any assessment of the radiation effect. Therefore, the 
comparison reveals the errors inherent in neglecting 
radiation. Second, the comparison shows the degree of 
heat transfer enhancement, as reflected by a reduction 
in the temperature of the heated wall, that occurs due 
to radiation. 

Examination of the figure reveals that whereas all 
temperatures increase with x as expected, there are 
significant differences between the results with and 
without radiation. At the heated wall, the rate of 
increase of the temperature with x is substantially 
smaller with radiation than without, resulting in a 
significant reduction in the wall temperature at down- 
stream locations. Thus, for example, in a solar 
collector application in which T, = 70°F rr 530”R, 

there may be wall temperature reductions of 50°F at 
the specified operating conditions [equation (21)J. 
Even greater reductions will occur at higher values of 
q,/aTf which may sometimes be encountered in solar 
applications. 

For a solar collector, the practical effect of a 
reduction of the temperature of the heated wall is a 
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decrease of the heat loss from that wall [i.e. from the 

collector plate through the cover plate(s) to the 
environment]. Such a decrease in heat losses brings 
about an increase in the efficiency of the collector. 
Therefore, the radiative transfer between the walls of 

the airflow passage appears to have an affirmative 
effect on the performance of the collector. 

This conclusion is somewhat tempered by another 

characteristic that may be observed in Fig. 2, namely, 

that the temperature of the unheated wall is sub- 
stantially elevated by the effect of radiation. Such an 
elevation tends to increase the heat loss from the rear 
side of the collector. However, it is much easier to 
defend against rear-side losses (by an insulation layer) 
than against losses that take place through the cover 
plates. Therefore, the radiation-induced reduction in 

losses due to a decrease in the temperature of the 
collector plate (i.e. the heated wall) should far out- 

weigh any increase of losses due to the elevation of the 
temperature of the unheated wall. 

Another interesting observation in Fig. 2 IS that 
separate bulk temperature lines have not been drawn 

for the with-radiation and without-radiation cases. 
The two lines are, in fact, coincident within the scale of 
the figure. This means that the radiation process, which 

has already been shown to be highly effective in 
transferring heat across the channel, does not trans- 

port significant amounts of energy along the channel. 
Further perspectives on this matter will be conveyed 

by the results for the first variant of the base case, 
which will now be discussed, and by the local heat flux 

results, to be presented later. 
In the first variant of the base case, all parameter 

values listed in equation (2 1) are retained as before, but 
the length of the channel is reduced from L/H = 200 to 
L/H = 100. This variant was selected in order to 
examine whether the results for a long duct, such as for 

L/H = 200, can be employed for cases characterized 
by smaller L/H, merely by cutting off the curves at an 
x/H value equal to the L/H of interest. 

As seen in Fig. 2, the wall and bulk temperature 
distributions for the L/H = 100 case are completely 
coincident with those for LjH = 200, except in a small 
region just upstream of u/H = 100 where the wall 

temperatures deviate slightly. Since the structure of the 

convective equations (3)- (5) does not permit upstream 
propagation of downstream effects, the slight de- 

viation in evidence near x/H = 100 is due entirely to 
radiative exchange with the downstream plenum for 
the L/H = 100 case. The fact that the deviation is 
confined to the near neighborhood of u!H = 100 
indicates that axial transport of energy by radiation is 
of no significance except near the plenums. It may also 
be concluded from Fig. 2 that wall and bulk tempera- 
ture distributions for longer ducts can be truncated 
and used for shorter ducts. 

For the second variant of the base case, the effect of 

* At all axial stations in the thermal development regime. 

~ WAil 
, 

x / r’ 

FIG,. 3. EfTect of Reynolds number on the *ali and buik 
temperature distribution* 

Reynolds number will be considered. C’orrespond- 
ingly, all of the parameters of equation (21) retain their 
given values, but Re is decreased from 2500 to 1500. 

The wall and bulk temperature distributions for ~hr: 
variant and the base cases are presented in Fig. 3. 

Curves for the heated wall and for the bulk are plotted 
in the upper graph, while curves for the unheated wail 

are plotted in the lower graph. 
The figure shows that the trends that were alread; 

identified for the higher Reynolds number (2500) 31~ 
hold for the lower Reynolds number However. careful 
inspection of Fig. 3 shows a greater reductiotl m the 
temperature of the heated wall at the lower Reynolds 
number and, concurrently, a greater increase in the 
temperature of the unheated wall. These findings cati 
be rationalized by noting that the lower Reynolds 

number implies a lower value of the convective heat 
transfer coefficient.* which makes the direct transfer of 
heat from the hot wall to the fluid less easy. This causes 
the radiation path to appear relatively more atlractl\e 
and enables radiation to be more effective in bringing 
the temperatures of the two walls closer together. At 
the downstream end of the passage. the higher tctn- 
peratures attained in the lower Reynolds numhcr cacz 
provide a further strengthening of the radiation owing 
to its fourth-power dependence on temperature. 

Another interesting observation in Fig. 3 concerns 
the degree of thermal development for the pure 

convection case, as witnessed by the attainment or 
nonattainment of parallelism of the wall and bulk 
temperature lines, For Re = 2500, thermal develop- 
ment is not attained for the channel length L/H = 200. 
whereas development is attained when Ru == 1500. 111 
the presence of radiation, there is no evidence 01 
parallelism of the bulk and wall temperature lmes for 
either case. 
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In the third variant of the base case, the trends 
associated with the parameter oT:/(k/H) will be 
examined. This parameter is, in effect, a Nusselt 
number for radiation, with aTz playing the role of a 
heat transfer coefficient. To provide an unambiguous 
appraisal of the role of this parameter, it was deemed 
advisable to adjust q,/crTf as uTf/(k/H) is varied, so 
that both the bulk temperature rise and the pure 
convection solution are unaffected by the changes. 
This is a~omp~shed by holding q,,,‘T,k constant. 
According to equation (12), constant values of this 
quantity can be attained by varying aTf/(k/H) and 
q,/aTf in inverse proportions. Thus, if aTf/(k/H) is 
increased from its base case value of 0.5 to 0.75, then 
q,/oTp has to be decreased from 1.0 to 213. The 
aforementioned changes have been made, and these 
define the third variant of the base case. 

The wall and bulk temperature distributions for the 
just-defined variant and for the base case are compared 
in Fig. 4. As per design, the wall temperatures for pure 
convection are the same for the two cases, as are the 
bulk temperature distributions. When radiation parti- 
cipates, the temperature of the heated wall is shifted 
downward when aT:/(k/H) is increased, and the 
temperature of the unheated wall is shifted upward. 
These shifts are consistent with a strengthened role of 
the radiative transfer, since it has already been estab- 
lished that radiation tends to bring the temperatures of 
the unheated and heated walls together. In addition, 
the shifts are consistent with the interpretation of 
aT:/(k/H) as a Nusselt number for radiation, since 
increases in Nusselt number are generally indicative of 
a strengthening of the transport process represented by 
the Nusselt number. 

Further examination of Fig. 4 shows that the shifts 
in the wail temperatures corresponding to a 50% 
increase in aT:/(k/H) (from 0.5 to 0.75) are rather 
small. Therefore, substantially larger increases in this 
parameter are needed in order to induce significant 
changes in the wall temperatures. 

The Fourth and final variant to be considered is a 
reduction of the external heating parameter q,/aTf 
from 1.0 to 0.25, with all other parameters held fixed. 

1.3 

aT,3/ik/Hf= _//A- 

FIG. 4. Effect of the parameter oTfj(k/Hf on the wail and 
bulk temperature distributions. 
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FIG. 5. Effect of the heating parameter q,/crTf on the wall 
and bulk temperature distributions. 

Numerical solutions were carried out for the two 
previously considered Reynolds numbers, Re = 2500 
and 1500, and the results are shown in Fig. 5. The 
structure of this figure is identical to that of Fig. 3, with 
the major difference being the substantial reduction in 
the range of the ordinate variable. It is this reduction in 
temperature level that is the main message of Fig. 5. 

Along with the reduction in temperature level, the 
absolute effect of the radiative transfer also diminishes. 
However, radiation is by no means without effect. 
Thus, for example, the action of radiation raises the 
temperature of the unheated wall from values that are 
below the bulk temperature to values that are above 
the bulk tem~rature. Even with this, the radiation- 
induced wall temperature changes at relatively low 
external heat fluxes do not appear to be of great 
practical significance. 

Wall heat $ux distributions 
To provide further perspectives about the role of 

radiation, distributions of the local convective heat 
fluxes on the heated and unheated walls are presented 
in Figs. 6 and 7, for Re = 2500 and 1500, respectively. 
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FOG. 6. Convective heat flux distributions, Re = 2500. 



FIG. 7. Convective heat flux distributions, Re = 1500. 

The ordinate is the ratio of the local convective flux q, 

to the externally applied flux 4,,,. In each figure, the 
curves in the upper portion pertain to the heated wall, 

while those in the lower portion pertain to the 
unheated wall. To provide a backdrop for the dis- 
cussion, it should be noted that for pure convection, 

the respective curves for the heated and unheated walls 
would be horizontal lines positioned at 4,/q, = 1 and 

Y&I, = 0. 

From a comparison of Figs. 6 and 7, it is seen that for 
corresponding cases (i.e. all parameters the same 
except for Re), the q,/q, values at the heated wall are 
higher at the larger Reynolds number, while the q, :q, 
values on the unheated wall are lower. This behavior is 

consistent with the already discussed lesser effective- 
ness of the radiative transfer at larger Reynolds 
numbers. 

Nusselt number distributions 
Inspection of the figures indicates a common trend 

for all cases. For the heated wall, qc/qw cz 1 at x = 0 
and then decreases with increasing x, rather rapidly at 
first and then more gradually; in the neighborhood of 
the downstream plenum there is a sharp drop. The heat 
flux distributions for the unheated wall begin with 

q,/q, slightly greater than zero. Initially, the curves rise 

rapidly with x, with a more gradual increase at larger 
downstream distances. There is a rapid drop-off near 
the downstream plenum. 

Local Nusselt numbers for the heated wall, eva- 

luated from equation (20), are plotted in Figs. 8 and 9. 
respectively for Re = 2500 and Re = 1500. In addition 
to results for the radiation-affected cases, a curve for 
the pure convection case is included in each figure for 
reference purposes. 

Perhaps the most interesting message of Figs. 6 and 
7 is the magnitudes of qc/‘q, on the two walls. Over a 
large portion of the channel, say, for x/H > 50, q,:q,, 
- 0.6-0.65 for the heated wall and q,/q, - 0.35-0.4 

for the unheated wall. Thus, due to radiative transfer, 
the so-called unheated wall carries about 409, of the 
total convective heat load. Consequently, both walls 
are active participants in the convective transfer to the 

flowing fluid. 

As expected, the high initial heat transfer coefficients 
drop off rapidly due to boundary layer development 

and then tend toward uniform or nearly uniform 
values in the downstream region. Whereas the 
radiation-affected coefficients do not differ appreciably 
from the pure convection values in the initial portion 

of the channel, substantial differences are in evidence in 
the downstream portion. In that region, the radiation- 
affected coefficients are about 25”, higher than those 
for pure convection. The cause of the higher coef- 

The curves appearing in each figure are arranged 
according to the relative strengths of the radiative 

transfer for the respective cases, as was discussed 
earlier in connection with Figs. 2~ 5. That discussion et 
need not be repeated here. It is, however, relevant to Nu / 

explain the trend of the distributions with X. Near the 7 ! 
inlet (x = 0), convection dominates because of the 
relatively high heat transfer coefficients associated 
with the initial thermal development of the flow. 61 
Consequently, heat flows readily from the heated wall 
to the fluid. As the thermal boundary layers grow with 51 
increasing downstream distance, the convection coef- 0 

ficients decrease. This weakening of the convection 
assists the radiation in its efforts to transport energy 
from the heated to the unheated wall. Correspond- heated wall, Ke = L3UU. 
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FIG. 8. Local Nusselt number distributions along the directly .._ __^^ 
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ingly, the unheated wall takes on a greater share of the 
burden of heating the fluid, and the heated wall does 
less heating of the fluid. 

Once the rapid changes in the convrectivc coefficient 

have been completed, the qc,!qw distributions tend to 

vary slowly, reflecting any residual changes in the 
convective coefficient as well as the increase in the 

temperature level (which tends to assist the radiation). 
Near the downstream plenum, the 4,. 4,<, values drop 
off rapidly owing to the net transfer of radiant energy 

from the duct walls to the plenum. 

It is interesting to note that the q,, Y,~ values for the 
heated and unheated walls sum to unity along the 
entire length of the channel, except near the ends. Near 

the inlet, the sum is slightly in excess of one, whereas at 

the exit the sum drops abruptly to about 0.75 
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Frc;. 9. Local Nusselt number distributions along the directly 
heated wall, Re = 1500. 

ficients is the reduction in the wall temperature, 
resulting in lower values of (T, - Tb). This decrease in 
(TW - TJ is greater than the reduction of q. with the 
result that q,/( T, - Tb) increases due to radiation. 

It is interesting to observe that the radiation-affected 
coefficients tend to level off at lower values of x/H than 
do the pure convection coefficients. Also, in some 
cases, notably the uppermost curve of Fig. 9, the 
radiation-affected coefficients tend to rise slightly in 
the downstream region. To explore the reason for this 
rise, the just-mentioned case (upper curve of Fig. 9) was 
re-run with q,JaTf = 4 rather than with q,JaT;’ = 1. 
This yielded a greater rise in Nu than that of Fig. 9. In 
addition, the higher heat flux brought forth higher 
temperature levels. 

It is believed that the downstream rise in Nusselt 
number is intimately related to temperature level. At 
higher temperature levels, radiation becomes more 
effective in decreasing T,. Since the highest tempera- 
tures and lowest convection coefficients are encoun- 
tered in the downstream portion of the channel, 
increases in h due to decreases in (T,- Tb) appear 
plausible. 

From a comparison of Figs. 8 and 9, it is evident that 
thermal development takes place more rapidly at 
lower Reynolds numbers, both with and without 
radiation participation. Immediately adjacent to the 
exit, the heat transfer coefficient drops sharply because 
of the sharp drop in qc brought about by heat losses to 
the downstream plenum. 

CONCLUDING REMARKS 

The results presented here have demonstrated that 
radiative exchange in a channel can be highly effective 
in activating convective heat transfer to a flowing 
airstream from an otherwise unheated wall. In the case 
considered here, where one wall of the channel is 
externally heated and the other is externally adiabatic, 
the presence of the radiation causes the task of heating 
the fluid to be shared between the two walls. This 
sharing is most pronounced downstream of the initial 
portion of the thermal entrance region, where the high 
initial values of the heat transfer coefficient have given 
way to more moderate values. In the downstream 
region, for the cases studied here, about 60% of the 
external heat flux is transferred to the fluid at the 
directly heated plate and 40% is transferred at the 
radiatively heated plate. 

The effect of the aforementioned sharing of the 
convective heating of the air is to reduce the tempera- 
ture of the directly heated plate. This reduction has 
affirmative implications for the efficiency of an air- 
operated flat plate solar collector because the tempera- 
ture decrease diminishes the heat losses through the 
cover system. 
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INTERACTION CONVECTION-RAYONNEMENT DANS UN CANAL A PLANS 
PARALLELES-APPLICATION AUX COLLECTEURS SOLAIRES A AIR 

R&sum&-L’analyse concerne le developpement simultanC des champs laminaires de vitesse et de 
temperature dans un canal B plans parall&les, avec intdraction de la convection et du rayonnement. Une paroi 
du canal est chat&e de l’exttrieur alors que l’autre est isolee exterieurement ; l’air est le fluide de transfert. Ces 
conditions sont semblables g celles d’un collecteur solaire plan B air. Les rtsultats montrent que l’tchange 
radiatif conduit le chauffage du fluide par convection B un partage entre les deux parois avec B peu p&s 40 
pour cent du transfert par convection sur la paroi extkieurement adiabatique. Ceci peut conduire B une 
rtiuction sensible de la temerature du mur chauff& directement ce qui pour un collecteur solaire tend B 
augmenter son efficacitd. Les nombres de Nusselt, en prCsence du rayonnement, sont plus tlevds que ceux de 

la convection for& pure. 
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WARMEAUSTAUSCH DURCH KONVEKTION UND STRAHLUNG ZWISCHEN PARALLELEN 
PLATTEN-ANWENDUNG AUF LUFTGEKUHLTE SONNENKOLLEKTOREN 

Zusammenfassung-Eine Untersuchung des Warmetransports durch Konvektion und Strahlung zwischen 
zwei parallelen Platten fiir jeweils ausgebildetes laminares Geschwindigkeits- und Temperaturfeld wurde 
durchgefiihrt. Eine Wand des StrGmungskanals wird von auRen beheizt, die andere ist von au5en isoiiert. 
WLrmetransportmedium ist Luft. Die Bedingungen sind denen in einem luftgekiihlten Sonnenflachkollektor 
Bhnlich. Die Ergebnisse zeigen, da5 der Strahlungsaustausch dazu fiihrt, da5 von beiden Wiinden konvektiv 
Wlrme an das Fluid iibertragen wird, wobei ca. 40% des konvektiven WPrmestroms von der isolierten Wand 
iibertragen werden. Hierdurch kann sich die Temperatur der direkt beheizten Wand merklich verkleinern, 
was fiir den Sonnenkollektor einen grii5eren Wirkungsgrad ergibt. Die Nusselt-Zahlen sind, wenn 

Wgrmestrahlung vorhanden ist, grii5er als bei reiner erzwungener Konvektion. 

B3AMMOJJEZiCTBklE MEXflY KOHBEKTMBHOR M JIY’4MCTOfi COCTABJlXlIIO~MMM 
TEWIOO6MEHA B WIOCKOnAPAJIJIEJIbHOM KAHAJIE - nPMJIOXEHME 
K COJIHErlHbIM KOJIJIEKTOPAM C B03flYUlHbIM TEWIOHOCMTEJIEM 

AHHOTaqIts- npOBWH aHam naME"apHbIX nOJIcti CKOpOCTH B TeMnepLllypbi, paSUiBaKW4iXCn 

OnHOBpeMeHHO B nnOCKOnapannenbHOM KaHaAc, B KOTOpOM npONCXOiW%T KOHBcKTHBHbIk H JTyWCTbIti 

Tennonepetroc. OnHa ~3 cTenoK Kanana narpesaexn cnapymlr, a npyran TenaossonapoeaHa; ienno- 
HOCHTeneM C,IyW%T BO3DyX. 3TH yC,IOBW aHanOI?FIHbI TeM, KOTOpbIe ElMClOT MeCTO B n,LaCTAH'faTOM 

CO,,HeqHOM KO,I,IeKTOpe C BOJayXOM B KaWXTBC TCIU,OHOCHTC~R. Pe3ynbTdTbI IIOKaSblBaIOT, 'IT0 N3-3a 

BJlHXHUIl nyWCTOr0 IlepeHoCa 3Ua'Ia 0 KOHBeKTNBHOM nepeHOCc LlOJImHa paCCMaTpHBaTbCR OTLlcJlbHO 

nna Kaxnofi cTenKH, npugeM 40 “;, KoHaeKTmnioro nepeHoca ocymecT*nneTcx ~Bnrrse anaa6aTHqecKoii 
CTeHKW. B pe3yJlbEiW MOTeT Ha6nIonaTbcR 3HaVATenbHOe CHWmeHHe TeMnepaTypbl HcnOCpeLlCTBcHHO 

HarpeBaeMofi cTeHKti, wo npueonaT, B cnyqae conneqnoro KonneK-ropa, K pocky ~.n.n. npH yore 

JIyWCTOti COCl-dBJI?WWeti 3HaqeHHI wcna HyCCeJIbTa BbIUIe ~3Haqemil. nonyraeMbIx il.7~ 0zHoE 

BbIHyTneHHOti KOHBCKUHW 


