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Abstract—An analysis is made for simultaneously developing laminar velocity and temperature fields in a
parallel plate channel in which convective and radiative heat transfer interact. One wall of the channel is
externally heated and the other is externally insulated; air is the heat transfer fluid. These conditions are
similar to those in an air-operated flat-plate solar collector. The results show that the radiant interchange
causes the task of convective heating of the fluid to be shared between the two walls, with as much as 40%; of
the convective transfer taking place at the externally adiabatic wall. This can give rise to a significant
reduction of the temperature of the directly heated wall which, for a solar collector, tends to improve its
efficiency. The Nusselt numbers in the presence of radiation are higher than those for pure forced convection.

wall,

NOMENCLATURE
A, surface area;
F, angle factor;
H, channel height;
h, local heat transfer coefficient, q./(T,, — T});
k, thermal conductivity;
L, channel length;
Nu, local Nusselt number on heated
h(2H)/k;
P, dimensionless pressure, equation (2);
p, pressure;
Pr,  Prandtl number;
q., local convective heat flux;
4, local radiative heat flux;
4., local external heat flux;
Re, Reynolds number, #(2H)/v;
T, absolute temperature;
T,, bulk temperature;
T,, wall temperature;
Ty, inlet-plenum and fluid inlet temperature;
Ty, exit-plenum temperature;
X, Y, dimensionless coordinates, equation (1);
x,y, physical coordinates, Fig. 1;
U,V, dimensionless velocities, equation (1);
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u,v, velocity components;

a, mean velocity ;

n, x-coordinate along heated wall;
0, dimensionless temperature, T/T;;
v, kinematic viscosity ;

¢, x-coordinate along unheated wall;
o, Stefan—Boltzmann constant.

INTRODUCTION

IN RECENT years, there has been a number of studies of
the interaction between forced convection and ra-
diation heat transfer in pipes and ducts. In the main,
these studies have been concerned with flowing fluids
which participate in the radiation process, although
some of the earlier work dealt with radiatively non-
participating fluids. Air may be regarded as a ra-
diatively nonparticipating fluid, and when air flows
under laminar conditions the relatively low convective
heat transfer coefficients provide a setting for signi-
ficant effects of radiative transfer between the duct
walls. This paper deals with one such situation,
namely, laminar flow of air in a parallel plate channel
which is uniformly heated at one wall and adiabatic
at the other. A schematic diagram of the physical
situation is shown in Fig. 1.

The present work was initially motivated by flat
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FiG. 1. Schematic diagram of the parallel plate channel.
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plate solar collectors in which air is employed as the
transfer fluid. Although the analysis and results are not
limited to solar collector applications, it is edifying to
discuss air-operated collectors in order to show the
basis of the present analytical model.

In the standard type of air-operated solar collector
presently in use today, the solar flux absorbed by the
collector plate is transferred to an air stream which
passes through a flat rectangular duct of large cross-
sectional aspect ratio. The duct is situated immediately
beneath the collector plate, so that the plate serves as
the upper wall of the duct. The lower wall of the duct is
an insulated surface. Typically, the height H of the duct
is 1 ¢cm (0.394 in.) and its length L (per collector panel)
is 1.98 m (61 ft). The rate of airflow through the duct is
usually selected to be 2ft>/min per square foot of
collector surface [1]. The corresponding Reynolds
number (based on an equivalent diameter D, = 2H) is
about 2300.

With regard to flow regimes (i.e. laminar vs turbu-
lent) in a paralle! plate channel, an extensive experi-
mental study [2] encompassing 12 entrance and distur-
bance configurations indicated that laminar flow
commonly persisted up to Re = 2600 or greater if the
sources of disturbance are not situated within the
channel proper. In view of this and of the aforemen-
tioned value of 2300, there is a basis for considering a
laminar flow model in the analysis of the heat transfer
processes taking place in the collector airflow pas-
sages. There are, of course, other operating conditions
(e.g., a series arrangement of collector panels) where
higher Reynolds numbers will be encountered. These
cases may be characterized by transitional flows (ie.
intermittently turbulent), so that a model based on
fully turbulent conditions is inappropriate. For these
transitional cases, the results of a laminar flow analysis
may have trendwise relevance.

The analysis to be performed here will be concerned
with high Reynolds number laminar flows (Re = 1500~
2500). At these Reynolds numbers, there is a long
hydrodynamic development length (~100H at Re
= 2500). Therefore, in the analysis, account will be
taken of the simultaneous development of the velocity
and temperature distributions along the length of the
channel.

The presence of radiative transfer is expected to
improve the efficiency with which heat is transferred
from the heated plate to the fluid, i.e. it should lower
the temperature of the heated plate. This expectation is
based on the belief that radiation will deliver energy to
the otherwise unheated plate (lower plate of Fig. 1)
which, in turn, will transfer heat to the fluid by
convection. Thus, radiation serves as an enhancement
mechanism. The maximum effect of the radiative
transfer will occur when the surfaces of the channel are
black, and it is, therefore, natural to focus attention on
the black case, as has been done here.

The starting point of the analysis is the governing
differential equations expressing conservation of mass,
momentum and energy for the fluid, supplemented by
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the radiative transfer equations for the walls. This
complex system does not admit an analytical solution,
and numerical techniques were employed. The prob-
lem is governed by five parameters, so that care has to
be exercised in the selection of cases for which
solutions are obtained, especially since each case yields
presentable results for the temperatures and heat
fluxes at the heated and unheated walls, the bulk
temperature, and the Nusselt number. The approach
finally chosen was to define a base case (typical of solar
collector operation) and then to systematically change
the parameter values relative to those of the base case.

A literature search yielded two papers which, al-
though having a filial relationship to the present work.
are distinctly different. In [3], consideration was given
to the interaction of radiation and convection in a
parallel plate channel, but the task of solving the
convection problem was avoided by assuming that the
heat transfer coefficients were known. Such an ap-
proach is not applicable in the present problem
because the coefficients are not known beforehand but
depend on the temperature distributions along the
walls (which are found from the solutions). In {4], the
task of solving the convection problem was also
avoided--in that case by making use of series soi-
lutions for hydrodynamically developed laminar chan-
nel flow with uniform wall heat flux. That method is
also inapplicable to the present problem but, even if it
were. its use would have involved greater complexity
and yet would have provided results of lesser accuracy
than the present direct solution method.

ANALYSIS
Formulation of the governing equations

To prepare the governing equations for solution,
dimensionless variables and parameters are first in-
troduced as follows

(1)

2

X =x/H, Y =y/H Vo= viu

0 =TT,

U = wu,

P = p/;)dz, Re = u(2H)/v

where all temperatures are expressed in absolute units.
With these, the mass, momentum and energy equa-
tions for the fluid are expressible as
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In these equations, the streamwise second derivatives
have been omitted, as have cross sectional pressure
variations ; in addition, the y-momentum equation has
been suppressed altogether. Such a model (which is
actually a boundary layer model) is altogether valid for
high laminar Reynolds numbers, as are being con-
sidered here.

It may also be noted that equations (3} and (4)
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contain three unknowns, U, V and P. An additional
equation, needed to make the system determinate
(actually, to determine P), is obtained from the con-
dition that the same mass flow passes through all cross
sections of the channel.

The foregoing equations are the conventional equa-
tions for hydrodynamically and thermally developing
duct flows. They may be supplemented by the wall and
inlet conditions for the velocity. At the wall, no-slip
and impermeability give, respectively,

U=V =0, (6)
while for a flat velocity profile at the inlet
U=1, V =0. (7)

The special features of the problem arise through the
thermal boundary conditions, which couple the con-
vection to the radiation. For concreteness, the thermal
boundary condition at the externally heated wall
(upper wall of Fig. 1) will be dealt with first, after which
the boundary condition at the externally adiabatic
wall (lower wall) will be written. If g, and g, denote the
local convective and radiative fluxes leaving a position
X = 7 on the heated wall, then

q.n) + 4,(n) = q,, = constant. (8)

The convective flux follows directly from Fourier’s law
as

q.(n) = (kTyH)(00/0Y). ©)

The radiative flux requires a more comprehensive
treatment, as will now be outlined.

The radiative flux g, at surface location # is the net of
the emitted radiation and the absorbed radiation at
that location. For a black surface, the radiation
emitted at » per unit time and area is ¢ T*(yy), while the
absorbed radiation is identically equal to the incident
radiation. The incident radiation arriving at # comes
from three zones: (i) the opposite wall, (ii) the channel
inlet aperture at X =0, and (iii) the channel exit
aperture at X = L/H. The radiation entering the
channel via the apertures, i.e. (ii) and (iii), may have a
variety of characteristics depending on the nature of
the upstream and downstream plenums. For gener-
ality, the respective plenums will be regarded as
isothermal zones with temperatures T; and Ty.

The mathematical representation of the incident
fluxes (i), (ii) and (iii) will be dealt with only briefly here
since similar descriptions are available elsewhere (e.g.,
[5], Chapter 3). With regard to (i), it may be noted that
the black-body radiation emitted at a position & on the
opposite wall is 6 T#(£)d Ay, of which a fraction dF,_,
arrives at 5 (the factor F is termed an angle factor). The
reciprocity rule for angle factors states that d4, dF;_,
= dA, dF,_.. Therefore, the radiation emitted at ¢
which arrives per unit area at # is oT*(&)dF,_,.
Contributions of this type are delivered to n from all
points between ¢ =0 and ¢ = L/H, and the total is
obtained by integration.

For (ii), the assumption of an isothermal plenum at
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temperature T, means that the radiation streaming
into the channel through the inlet aperture (area A;) is
aTi A, of which a fraction dF,_, arrives at . The
application of the reciprocity rule A4;dF;..,=dA,F,_,
then gives that o T#F, ,1 aIrives per unit area at 7. A
similar development shows that ¢ T{F,_ arrives at 5
from the exit aperture.

It is now possible to bring together all that has been
developed between equation (8) and the present. When
dimensionless variables are introduced, there follows

6 gqH TP [ , La
-7 - R . - 0*(&)dF,
Y " Tk (k/H)[ (n) o (E)dF, _.

—F, - 9{‘,F,,_“]. (10}

Equation (10) expresses the derivative 00/0Y at a point
n on the heated (i.e. upper) wall in terms of the
temperature at 1, of the temperatures at all points £ on
the externally adiabatic wall, and of the temperature in
the downstream plenum. If the right-hand side of
equation (10) were known, as, for example, from a
preceding cycle of an iterative solution method, then
the value of 90/3Y could be regarded as known. Such
known values of 06/0Y at all 0 < n < L/H could then
serve as the boundary condition for the convective
energy equation (5).

To determine a corresponding boundary condition
for the externally adiabatic wall, an analysis similar to
the foregoing is made, with the end result

00  oT}

L/H
RS [ 0hE) + f 64,

+F,_ + BﬁFi_“]. (11)

Again, if the right-hand side were tentatively known at
all 0 < ¢ < L/H, this equation can be employed as a
boundary condition for the solution of the convection
problem.

It may be noted that equations (10) and (11) contain
two parameters

oT}
(k/H)’

.H 4q, oI}
T\K ~ oT# (k/H)

. (12)

The first of these can be regarded as a measure of the
relative strengths of the radiative and convective
transport modes. The second has been rephrased in
equation (12) to form the group q,,/a T+, which will be
regarded here as an index of the strength of the external
heating.

It is also interesting to identify the message of
equations (10) and (11) with regard to convective heat
transfer. In (10), the quantity 86/0Y represents, in a
nondimensional form, the local convective heat trans-
fer from locations on the heated wall to the fluid. In the
absence of radiation, the uniform heat flux boundary
condition corresponds to d6/0Y = q,H/T k. The
radiation term appearing in (10), contained within the
square brackets, is expected to be positive. Therefore,
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the expected effect of radiation is to reduce the
convective heat transfer at the heated wall of the
channel.

In equation (11), the quantity (— 26/0Y) denotes the
local convective flux from a point & on the unheated
wall to the fluid. In the bracketed term on the right of
(11), the absorbed radiation is expected to exceed the
emitted radiation, which results in a positive value of
the convective heat flux. The foregoing observations,
taken together, indicate that the main role of the
radiation is to shift some of the burden of the
convective heat transfer from the heated to the un-
heated wall.

To complete the specification of the problem, it
remains to deal with the temperatures at the inlet and
exit of the duct. The convection problem only requires
that the inlet temperature be given, and the condition
T = T, yields

0=6=1 at X=0 (13)

The radiation problem requires values of the tempera-
tures in both the inlet and exit plenums. Depending on
the geometrical configurations of the plenums, it is
conceivable that the temperature of the plenum walls
will not equal that of the fluid in the respective plenum.
The deviations will depend on the specifics of the
particular situation. For a general study, such as that
performed here, it appears appropriate to take the wall
and fluid temperatures in each plenum to be equal
Thus, for the radiation problem,

0=0,=1 at X=0 (14)
0 = ), = fluid bulk temperature
at X = L/H. (15)

A final aspect of the specification of the problemis to
provide expressions for the angle factors that appear in
equations (10) and (11). This information will be
conveyed shortly when the solution methodology is
described.

Solution methodology

The governing equations that were presented in the
prior section of the paper were solved numerically by
finite difference procedures. A general outline of the
solution scheme will be discussed first, with details to
follow. For a given Reynolds number Re and channel
length L/H, a solution was first obtained for the
velocity problem defined by equations (3), (4), (6) and
(7). Then, attention was turned to the heat transfer
problem and, to define a given case, numerical values
were assigned to ¢T3 /(k/H), q,/cTy, and Pr, with
q,,H/ Tk being determined from the product of the first
two of these. A solution was first obtained for the pure
convection case: that is, the energy equation (5) was
solved subject to radiation-free forms of equations (10)
and (11) and to equation (13). Then, the pure con-
vection solution was employed to initiate an iterative
scheme for solving the coupled radiation-convection
problem.
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From the pure convection solution, temperature
distributions 6(n) and 6(¢), respectively corresponding
to the heated and unheated walls, are available, as is
the fluid bulk temperature at the channel exit [equal to
Oy according to equation (15)]. With these inputs, the
right-hand sides of equations (10) and (11) can be
evaluated, and this yields the distributions of ¢6/7Y
along the heated and unheated walls. These boundary
conditions, together with 6 = I at X = 0, may then be
employed for the solution of the energy equation {3,
and this solution yields new values for 8(x). 8t&), and
fy. Equations (10) and (11} can then be re-evaluated
and equation (5) solved anew. This procedure was
continued to convergence, which usually occurred
within five cycles of iteration.

The finite difference methodology used for the
velocity problem and for the convective part of the
heat transfer problem is an adaptation of the Patan-
kar—Spalding boundary layer procedure [6]. That
procedure was modified in accordance with the appen-
dix of [7] to facilitate the determination of the
unknown pressure gradient dP;dX that appears in
equation (4). To obtain highly accurate solutions,
approximately 5700 grid points were deployed through-
out the flow field—30 points in each of 187 cross
sections. To accommodate the larger gradients, the
points were more densely positioned near the channel
walls. A higher concentration of points was also
employed at small and moderate X values to adapt to
the velocity and thermal development; the grid was
also refined near X = L/H to accommodate rapid
temperature changes induced by radiation transfer to
the downstream plenum.

The integral terms of equations (10) and (i)
(associated with the radiation streaming between the
walls) were also recast in finite difference form. In this
connection, let (&, —~ &,), (&5 - &3) ooy (En — &y )
represent the lengths of successive line segmenis
deployed along the unheated wall. Furthermore, let 3,
= (& + &, ,)/2 denote the midpoints of the segments.
Similarly, the heated wall is envisioned as being made
up of segments of length (1, ~ ,) with midpoint
= (1, + Hns1)/2- Then, with these, the integral term of
equation (10) was represented as

N1

Y O y)Fy, {16

is
where the angle factor relates to interchange between
segments of length (n,., —#n,) and (&, — &) re-
spectively situated on the heated and unheated walls.
The angle factor was evaluated using equation (4-63)
of [5], with the result

2

2 =)y, — = [O1nes —E) L
L&+ 1]
[y =G 1]
—[lga—co* + 11" % (17
A similar approach was employed for evaluating the
integral term of equation (11). The angle factors F, _,.
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F,_y, etc. were evaluated for exchange between the
segment (1,4, —n,) and the aperture areas 4, and A;;.

Since the two walls were subdivided into identical
distributions of line segments, the angle factor matrix
is symmetric. It can, therefore, be stored in a one-
dimensional array following the sequence (1,1), (2,1),
2,2), (3,1), (3,2), (3,3), (4,1), ... . The angle factors
were calculated once (via double precision) and re-
trieved when needed according to the aforementioned

indexing sequence.

RESULTS AND DISCUSSION

Although the heat transfer coefficient h (or Nusselt
number) is traditionally the main focus in a pre-
sentation of results, there are good reasons for not
giving it top billing here. The essential fact is that due
to the action of radiation, the local convective heat
transfer g, the local wall temperature T,, and the local
bulk temperature T, are all unknown functions of x.
Since these quantities are, in fact, the ingredients that
comprise the heat transfer coefficient, it follows that
giving numerical values of h is equivalent to giving a
relationship between three unknowns. In view of this, it
is appropriate to explicitly present results for g, T,,
and T, all as functions of x. Furthermore, in the
presentation, account has to be taken of the fact that
the values of g, and T, on the heated wall are different
from those on the unheated wall. For completeness,
Nusselt number results are also given.

For a dimensionless presentation, the local heat
transfer results are expressed as ¢./q,, which, in terms
of the variables of the analysis, was evaluated from

4e/qw = +(06/0Y)/(q,H/Tik). (18)

In this equation, the plus sign is used with 60/0Y on the
heated wall and the minus sign is taken with 98/0Y on
the unheated wall.

The wall and bulk temperatures are reported in ratio
form, namely 0, = T,,/T; and 6, = T,/T;, where

6, = feuay/fUdY

with the integrals extending over therange0 < Y < 1.
Local Nusselt numbers were evaluated only at the
heated wall according to the definition

_ 4 M _200pv)

T,~T, k 0,,—0,

In planning the presentation of results, account has
to be taken of the fact that there are five independent
parameters, Re, Pr, L/H, ¢T3/(k/H) and q,/0T}.
Furthermore, for each case, the distributions of T, T,
g.,and Nu are to be plotted as a function of x. Clearly, a
conventional parametric study is precluded because
space would not be available to present the avalanche
of results that would be forthcoming. The approach
adopted to deal with this situation was to select a base
case (typical of solar collector operation) and then to
examine the trends in the results as the parameters are
changed relative to the base-case values. The base case

(19)

Nu

HMT 23.8—G
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Fic. 2. Wall and bulk temperature distributions for the base
case [equation (21)] and for a variant with L/H = 100.

was specified as follows
Re=2500, Pr=07  L/H=200,
oTHk/H) =05, q,/0Tf =1. (21)

For all of the other cases, the Prandtl number was
maintained at a value of 0.7.

Wall and bulk temperature distributions

The base-case wall and bulk temperatures are plotted
as a function of position along the length of the channel
in Fig. 2, where it should be noted that all temperatures
are expressed in absolute units. In addition to the
results which include the effect of radiative transfer, the
figure also contains results corresponding to pure
forced convection (i.e. radiation suppressed alto-
gether). The comparison between the results with and
without radiative participation is of importance for
two reasons. First, prior to the present investigation,
the pure convection results would have been employed
to calculate system heat transfer performance, without
any assessment of the radiation effect. Therefore, the
comparison reveals the errors inherent in neglecting
radiation. Second, the comparison shows the degree of
heat transfer enhancement, as reflected by a reduction
in the temperature of the heated wall, that occurs due
to radiation.

Examination of the figure reveals that whereas all
temperatures increase with x as expected, there are
significant differences between the results with and
without radiation. At the heated wall, the rate of
increase of the temperature with x is substantially
smaller with radiation than without, resulting in a
significant reduction in the wall temperature at down-
stream locations. Thus, for example, in a solar
collector application in which T; = 70°F =~ 530°R,
there may be wall temperature reductions of 50°F at
the specified operating conditions [equation (21)].
Even greater reductions will occur at higher values of
q4../o T} which may sometimes be encountered in solar
applications.

For a solar collector, the practical effect of a
reduction of the temperature of the heated wall is a
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decrease of the heat loss from that wall [i.e. from the
collector plate through the cover plate(s) to the
environment]. Such a decrease in heat losses brings
about an increase in the efficiency of the collector.
Therefore, the radiative transfer between the walls of
the airflow passage appears to have an affirmative
effect on the performance of the collector.

This conclusion is somewhat tempered by another
characteristic that may be observed in Fig. 2, namely,
that the temperature of the unheated wall is sub-
stantially elevated by the effect of radiation. Such an
elevation tends to increase the heat loss from the rear
side of the collector. However, it is much easier to
defend against rear-side losses (by an insulation layer)
than against losses that take place through the cover
plates. Therefore, the radiation-induced reduction in
losses due to a decrease in the temperature of the
collector plate (i.e. the heated wall) should far out-
weigh any increase of losses due to the elevation of the
temperature of the unheated wall.

Another interesting observation in Fig. 2 is that
separate bulk temperature lines have not been drawn
for the with-radiation and without-radiation cases.
The two lines are, in fact, coincident within the scale of
the figure. This means that the radiation process, which
has already been shown to be highly effective in
transferring heat across the channel, does not trans-
port significant amounts of energy along the channel.
Further perspectives on this matter will be conveyed
by the results for the first variant of the base case,
which will now be discussed, and by the local heat flux
results, to be presented later.

In the first variant of the base case, all parameter
values listed in equation (21) are retained as before, but
the length of the channel is reduced from L/H = 200 to
L/H = 100. This variant was selected in order. to
examine whether the results for a long duct, such as for
L/H = 200, can be employed for cases characterized
by smaller L/H, merely by cutting off the curves at an
x/H value equal to the L/H of interest.

As seen in Fig. 2, the wall and bulk temperature
distributions for the L/H = 100 case are completely
coincident with those for L/H = 200, except in a small
region just upstream of x/H = 100 where the wall
temperatures deviate slightly. Since the structure of the
convective equations (3)-(5) does not permit upstream
propagation of downstream effects, the slight de-
viation in evidence near x/H = 100 is due entirely to
radiative exchange with the downstream plenum for
the L/H = 100 case. The fact that the deviation is
confined to the near neighborhood of x/H = 100
indicates that axial transport of energy by radiation is
of no significance except near the plenums. It may also
be concluded from Fig. 2 that wall and bulk tempera-
ture distributions for longer ducts can be truncated
and used for shorter ducts.

For the second variant of the base case, the effect of

* At all axial stations in the thermal development regime.
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FiG. 3. Effect of Reynolds number on the wall and bulk
temperature distributions.

Reynolds number will be considered. Correspond-
ingly, all of the parameters of equation (21) retain their
given values, but Re is decreased from 2500 to 1500.
The wall and bulk temperature distributions for the
variant and the base cases are presented in Fig. 3.
Curves for the heated wall and for the bulk are plotted
in the upper graph, while curves for the unheated wall
are plotted in the lower graph.

The figure shows that the trends that were already
identified for the higher Reynolds number {2500) also
hold for the lower Reynolds number. However, careful
inspection of Fig. 3 shows a greater reduction in the
temperature of the heated wall at the lower Reynolds
number and, concurrently, a greater increase in the
temperature of the unheated wall. These findings can
be rationalized by noting that the lower Reynolds
number implies a lower value of the convective heat
transfer coefficient,* which makes the direct transier of
heat from the hot wall to the fluid less easy. This causes
the radiation path to appear relatively more atiractive
and enables radiation to be more effective in bringing
the temperatures of the two walls closer together. At
the downstream end of the passage. the higher tem-
peratures attained in the lower Reynolds number case
provide a further strengthening of the radiation owing
to its fourth-power dependence on temperature.

Another interesting observation in Fig. 3 concerns
the degree of thermal development for the pure
convection case, as witnessed by the attainment or
nonattainment of parallelism of the wall and bulk
temperature lines. For Re = 2500, thermal develop-
ment is not attained for the channel length L/H = 200,
whereas development is attained when Re = 1500. In
the presence of radiation, there is no evidence of
parallelism of the bulk and wall temperature lines for
either case.
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In the third variant of the base case, the trends
associated with the parameter oT7/(k/H) will be
examined. This parameter is, in effect, a Nusselt
number for radiation, with 6T} playing the role of a

heat transfer coefficient, To nrovide an unambiouous
agat ransicr CoSCIEnt, 10 Proviae an unamobiguiul

appraisal of the role of this parameter, it was deemed
advisable to adjust q,,/a T} as aT3/(k/H) is varied, so
that both the bulk temperature rise and the pure
convection solution are unaffected by the changes.
This is accomplished by holding ¢,"Tk constant.
According to equation (12), constant values of this
quantity can be attained by varying ¢TF/(k/H) and
g,/o T} in inverse proportions. Thus, if ¢ T?/(k/H) is
increased from its base case value of 0.5 to 0.75, then
4./c T} has to be decreased from 1.0 to 2/3. The
aforementioned changes have been made, and these
define the third variant of the base case.

The wall and bulk temperature distributions for the
just-defined variant and for the base case are compared
in Fig. 4. As per design, the wall temperatures for pure
convection are the same for the two cases, as are the
bulk temperature distributions. When radiation parti-
cipates, the temperature of the heated wall is shifted
downward when oT7/(k/H) is increased, and the
temperature of the unheated wall is shifted upward.
These shifts are consistent with a strengthened role of
the radiative transfer, since it has already been estab-
lished that radiation tends to bring the temperatures of
the unheated and heated walls together. In addition,
the shifts are consistent with the interpretation of
oTP/(k/H) as a Nusselt number for radiation, since
increases in Nusselt number are generally indicative of
a strengthening of the transport process represented by
the Nusselt number.

Further examination of Fig. 4 shows that the shifts
in the wall temperatures corresponding to a 50%
increase in o¢T?/(k/H) (from 0.5 to 0.75) are rather
small. Therefore, substantially larger increases in this
parameter are needed in order to induce significant
changes in the wall temperatures.

The fourth and final variant to be considered is a
reduction of the external heating parameter g, /0T7
from 1.0 to 0.25, with all other parameters held fixed.
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FiG. 4. Effect of the parameter o T;/(k/H) on the wall and
bulk temperature distributions.
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Numerical solutions were carried out for the two
previously considered Reynolds numbers, Re = 2500
and 1500, and the results are shown in Fig. 5. The
structure of this figure is identical to that of Fig. 3, with
the major difference being the substantial reduction in
the range of the ordinate variable. It is this reduction in
temperature level that is the main message of Fig. 5.

Along with the reduction in temperature level, the
absolute effect of the radiative transfer also diminishes.
However, radiation is by no means without effect.
Thus, for example, the action of radiation raises the
temperature of the unheated wall from values that are
below the bulk temperature to values that are above
the bulk temperature. Even with this, the radiation-
induced wall temperature changes at relatively low
external heat fluxes do not appear to be of great
practical significance.

Wall heat flux distributions

To provide further perspectives about the role of
radiation, distributions of the local convective heat
fluxes on the heated and unheated walls are presented
in Figs. 6 and 7, for Re = 2500 and 1500, respectively.
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FiG. 6. Convective heat flux distributions, Re = 2500.
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FiG. 7. Convective heat flux distributions, Re = 1500.

The ordinate is the ratio of the local convective flux ¢,
to the externally applied flux g,,. In each figure, the
curves in the upper portion pertain to the heated wall,
while those in the lower portion pertain to the
unheated wall. To provide a backdrop for the dis-
cussion, it should be noted that for pure convection,
the respective curves for the heated and unheated walls
would be horizontal lines positioned at q./g,, = 1 and
qc/qw =0.

Inspection of the figures indicates a common trend
for all cases. For the heated wall, ¢./q,, ~1 at x =0
and then decreases with increasing x, rather rapidly at
first and then more gradually; in the neighborhood of
the downstream plenum there is a sharp drop. The heat
flux distributions for the unheated wall begin with
q./4., slightly greater than zero. Initially, the curves rise
rapidly with x, with a more gradual increase at larger
downstream distances. There is a rapid drop-off near
the downstream plenum.

Perhaps the most interesting message of Figs. 6 and
7 is the magnitudes of q./q,, on the two walls. Over a
large portion of the channel, say, for x/H > 50, g./4.,
~ 0.6-0.65 for the heated wall and q./q,, ~ 0.35-0.4
for the unheated wall. Thus, due to radiative transfer,
the so-called unheated wall carries about 40%, of the
total convective heat load. Consequently, both walls
are active participants in the convective transfer to the
flowing fluid.

The curves appearing in each figure are arranged
according to the relative strengths of the radiative
transfer for the respective cases, as was discussed
earlier in connection with Figs. 2--5. That discussion
need not be repeated here. It is, however, relevant to
explain the trend of the distributions with x. Near the
inlet (x = 0), convection dominates because of the
relatively high heat transfer coefficients associated
with the initial thermal development of the flow.
Consequently, heat flows readily from the heated wall
to the fluid. As the thermal boundary layers grow with
increasing downstream distance, the convection coef-
ficients decrease. This weakening of the convection
assists the radiation in its efforts to transport energy
from the heated to the unheated wall. Correspond-
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ingly, the unheated wall takes on a greater share of the
burden of heating the fluid, and the heated wall does
less heating of the fluid.

Once the rapid changes in the convective coefficient
have been completed, the ¢ /g, distributions tend te
vary slowly, reflecting any residual changes in the
convective coefficient as well as the increase in the
temperature level (which tends to assist the radiation).
Near the downstream plenum, the ¢ /¢, values drop
off rapidly owing to the net transfer of radiant energy
from the duct walls to the plenum.

It is interesting to note that the ¢,./qg,, values for the
heated and unheated walls sum to unity along the
entire length of the channel, except near the ends. Near
the inlet, the sum is slightly in excess of one, whereas at
the exit the sum drops abruptly to about 0.75.

From a comparison of Figs. 6 and 7, it is seen that for
corresponding cases (i.e. all parameters the same
except for Re), the q./q,, values at the heated wall are
higher at the larger Reynolds number, while the g,/q,
values on the unheated wall are lower. This behavior is
consistent with the already discussed lesser effective-
ness of the radiative transfer at larger Reynolds
numbers.

Nusselt number distributions

Local Nusselt numbers for the heated wall, eva-
luated from equation (20), are plotted in Figs. 8 and 9.
respectively for Re = 2500 and Re = 1500. In addition
to results for the radiation-affected cases, a curve for
the pure convection case is included in each figure for
reference purposes.

As expected, the high initial heat transfer coefficients
drop off rapidly due to boundary layer development
and then tend toward uniform or nearly uniform
values in the downstream region. Whereas the
radiation-affected coefficients do not differ appreciably
from the pure convection values in the initial portion
of the channel, substantial differences are in evidence in
the downstream portion. In that region, the radiation-
affected coefficients are about 25%; higher than those
for pure convection. The cause of the higher coef-
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F1G. 8. Local Nusselt number distributions along the directly
heated wall, Re = 2500.
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Fi1G.9. Local Nusselt number distributions along the directly
heated wall, Re = 1500.

ficients is the reduction in the wall temperature,
resulting in lower values of (T, — T,). This decrease in
(T, — T,) is greater than the reduction of g,, with the
result that q./(T,, — T,) increases due to radiation.

Itis interesting to observe that the radiation-affected
coefficients tend to leve] off at lower values of x/H than
do the pure convection coefficients. Also, in some
cases, notably the uppermost curve of Fig. 9, the
radiation-affected coefficients tend to rise slightly in
the downstream region. To explore the reason for this
rise, the just-mentioned case (upper curve of Fig. 9) was
re-run with g,,/6 T} = 4 rather than with ¢,,/c T} = 1.
This yielded a greater rise in Nu than that of Fig. 9. In
addition, the higher heat flux brought forth higher
temperature levels.

It is believed that the downstream rise in Nusselt
number is intimately related to temperature level. At
higher temperature levels, radiation becomes more
effective in decreasing T,,. Since the highest tempera-
tures and lowest convection coefficients are encoun-
tered in the downstream portion of the channel,
increases in h due to decreases in (T,,— T;) appear
plausible.

From a comparison of Figs. 8 and 9, it is evident that
thermal development takes place more rapidly at
lower Reynolds numbers, both with and without
radiation participation. Immediately adjacent to the
exit, the heat transfer coefficient drops sharply because
of the sharp drop in g, brought about by heat losses to
the downstream plenum.
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CONCLUDING REMARKS

The results presented here have demonstrated that
radiative exchange in a channel can be highly effective
in activating convective heat transfer to a flowing
airstream from an otherwise unheated wall. In the case
considered here, where one wall of the channel is
externally heated and the other is externally adiabatic,
the presence of the radiation causes the task of heating
the fluid to be shared between the two walls. This
sharing is most pronounced downstream of the initial
portion of the thermal entrance region, where the high
initial values of the heat transfer coefficient have given
way to more moderate values. In the downstream
region, for the cases studied here, about 60%, of the
external heat flux is transferred to the fluid at the
directly heated plate and 409 is transferred at the
radiatively heated plate.

The effect of the aforementioned sharing of the
convective heating of the air is to reduce the tempera-
ture of the directly heated plate. This reduction has
affirmative implications for the efficiency of an air-
operated flat plate solar collector because the tempera-
ture decrease diminishes the heat losses through the
cover system.
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INTERACTION CONVECTION-RAYONNEMENT DANS UN CANAL A PLANS
PARALLELES—APPLICATION AUX COLLECTEURS SOLAIRES A AIR

Résumé—L’analyse concerne le développement simultané des champs laminaires de vitesse et de
température dans un canal 4 plans paralléles, avec intéraction de la convection et du rayonnement. Une paroi
du canal est chauffée de I'extérieur alors que 'autre est isolée extérieurement ; I'air est le fluide de transfert. Ces
conditions sont semblables 4 celles d'un collecteur solaire plan & air. Les résultats montrent que I'échange
radiatif conduit le chauffage du fluide par convection 4 un partage entre les deux parois avec a peu prés 40
pour cent du transfert par convection sur la paroi extérieurement adiabatique. Ceci peut conduire a une
réduction sensible de la température du mur chauffé directement ce qui pour un collecteur solaire tend a
augmenter son efficacité. Les nombres de Nusselt, en présence du rayonnement, sont plus élevés que ceux de
la convection forcée pure.
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WARMEAUSTAUSCH DURCH KONVEKTION UND STRAHLUNG ZWISCHEN PARALLELEN
PLATTEN—ANWENDUNG AUF LUFTGEKUHLTE SONNENKOLLEKTOREN

Zusammenfassung—Eine Untersuchung des Warmetransports durch Konvektion und Strahlung zwischen
zwei parallelen Platten fiir jeweils ausgebildetes laminares Geschwindigkeits- und Temperaturfeld wurde
durchgefiihrt. Eine Wand des Stromungskanals wird von auBen beheizt, die andere ist von aufien isoliert.
Wirmetransportmedium ist Luft. Die Bedingungen sind denen in einem luftgekiihiten Sonnenflachkollektor
4hnlich. Die Ergebnisse zeigen, daB der Strahlungsaustausch dazu fiihrt, daB von beiden Winden konvektiv
Wiirme an das Fluid iibertragen wird, wobei ca. 40%, des konvektiven Warmestroms von der isolierten Wand
iibertragen werden. Hierdurch kann sich die Temperatur der direkt beheizten Wand merklich verkleinern,
was fiir den Sonnenkollektor einen groBeren Wirkungsgrad ergibt. Die Nusselt-Zahlen sind, wenn
Wirmestrahlung vorhanden ist, groBer als bei reiner erzwungener Konvektion.

B3AMMOJENCTBUE MEXJY KOHBEKTUBHOM M JIVUUCTOW COCTABJISIOMIMMU
TEIJIOOBMEHA B MJIOCKOIIAPAJIJIEJBHOM KAHAJIE - ITPUJIOXEHHE
K COJIHEYHBIM KOJUIEKTOPAM C BO3AVUIHBIM TEITJIOHOCHUTEJIEM

Aunotaums — [1poBelleH aHa/IH3 JIAMHHADHBIX NOJIEH CKOPOCTH M TEMNEPaTyphbi, Pa3BHBAOILUXCA
OJHOBPEMEHHO B MJIOCKONAPaji/e/bHOM KaHale, B KOTOPOM MPOMCXOIMT KOHBEKTHBHBIHA M JIy4HCTBIK
tennonepenoc. OHA M3 CTEHOK KaHaJla HAarpeBAeTCS CHAPYXH, a Jpyras TeNIOM30JMPOBAHA ; Tero-
HOCHTEJIEM CIIYXKMT BO3LYX. DTH YCJIOBHA aHAJIOTHYHBI TEM, KOTOPbIE HMEIOT MECTO B ILJIACTHHYATOM
COJIHEYHOM KOJIJIEKTOPE C BO3JYXOM B Ka4y€CTBE TEIIOHOCHTEA. PesynbTaTel nOKa3biBAIOT, 4TO H3-3d
BJIMSAHHA JIYYUCTOTO fIEPEHOCa 3a/1a4a O KOHBEKTHBHOM NEPEHOCE NO/DKHA PaCCMATPHMBATLCH OTAECHBHO
JUIS KaXJ0# CTeHKH, mpHieM 40 ) KOHBEKTUBHOIO NEpPeHoca ocylluecTsisercs BOmuin anuabarudeckoit
crenkH. B pesynbrate MOXeT HabIIONATHCS 3HAUMTEILHOE CHHXXEHHE TEMIEPATYPb! HENOCPEACTBEHHO
HArpeBAEMON CTEHKH, YTO MPHBOLHT, B CJIyyae COJNHEYHOTO KOJJIEKTOpa, K pocTy k. n. 4. [lpn yuere
AYYHCTOM COCTABNAIOIIEH 3HaweHMs uucia HyccenbTa BhIIE 3HAYEHHH, NOMY4a€MBIX Ul OJHOH
BBHIHYXACHHOH KOHBEKLUH.



